The Psychology of the Sense of Smell

Mark Sergeant

Nottingham Trent University
Human olfactory abilities

- Humans traditionally thought to be ‘microsmatic’
 - Species where olfaction (sense of smell) plays a limited role in behaviour

- Based on physiology - small olfactory bulb (OB) in humans
 - Olfaction seen as a “phylogenetically involuted relic” (Broca, 1888)
 - Supported by recent studies on human olfactory receptor (OR) gene loss
OR gene loss

<table>
<thead>
<tr>
<th>Species</th>
<th>OR Gene Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic dog</td>
<td>18%</td>
</tr>
<tr>
<td>Squirrel monkey</td>
<td>18%</td>
</tr>
<tr>
<td>Mouse</td>
<td>20%</td>
</tr>
<tr>
<td>Chimps</td>
<td>32%</td>
</tr>
<tr>
<td>Gorilla</td>
<td>28%</td>
</tr>
<tr>
<td>Orang-utan</td>
<td>32%</td>
</tr>
<tr>
<td>Rhesus macaque</td>
<td>36%</td>
</tr>
<tr>
<td>Humans</td>
<td>54% - 70% (~60% loss)</td>
</tr>
</tbody>
</table>

- **We do have reduced olfactory abilities, but we’ve still retained ~40% of our OR genes (because we use them)**
Human olfactory abilities

• This is now accepted as misleading
 – Human OB highly integrated (Keverne, 1983)
 – Humans can detect thousands of odours
 – Advanced cognitive abilities (Dobb, 1989)

• But... has resulted in much stronger focus on vision and audition for social communication in Psychological research:
 – Verbal communication (language)
 – Perception of body language
Problems with olfaction research

• Odours are invisible
 – Difficult to measure

• Lack of standardised methods:
 – No consensus on how to categorise odours

• Inconsistent findings:
 – Findings are often exploratory (improving)
 – Possible lack of replication (improving)

• Why should we study olfaction at all?
Olfaction in non-human animals

- Olfaction is the primary means of communication in many non-human species

- Influences a variety of social behaviours
 - Recognition of groups and individuals
 - Marking territory
 - Signalling mating characteristics
Human olfactory systems

- **The main olfactory system (MOS)**
 - Mediates what is commonly thought of as odour perception
 - Responsible for the flavours of food and beverages

- **Trigeminal somatosensory system (TSS)**
 - Mediates somatosensory sensations such as a sensation of burning, cooling and tickling
 - Capsaicin in chillis
The Olfactory System

- To thalamus, orbitofrontal cortex
- To hypothalamus
- To amygdala
- Piriform and entorhinal cortex (Primary olfactory cortex)

- Myelin sheath
- To olfactory bulb
- Axons
- Olfactory receptor cell
- Supporting cell
- Cilia of olfactory receptor cells
- Olfactory mucosa
- Turbinate bones
- Tongue
- Olfactory bulb
Olfactory receptor (OR) genes

• OR genes are the basis for the sense of smell
 – Odour molecules bind to the receptors
 – An action potential is generated and sent to the olfactory bulb

• Each OR doesn’t code for a single odour
 – Provide ability to smell lots of odours
 – Odor receptor nerve cells may function like a key-lock system

• Odotope theory
 – Different receptors detect only small pieces of molecules
 – These pieces combined to create a larger olfactory perception (an odour)
Parents and offspring

• Newborn babies learn the specific odours of their mother in the first few hours after birth (Porter & Winberg, 1999)

• Mothers learn the odour of their infant after only 6 hours exposure (Gall & Weisfeld, 2000)

• Most fathers, aunts and grandmothers also learn this odour after 72 hours exposure (Porter et al., 1986)
Human olfactory abilities

• Memory
 – Strong association with childhood memory (Rouby et al., 2002)
 – Linked to emotionally-salient events

• Mood
 – Growing evidence odours can influence mood (Herz, 2009)
 – Environmental odours can effect mood and stress levels (‘hog industry’ odours - Avery et al., 2009)

• Communicating emotions
 – Happiness (Chen & Haviland-Jones, 2000)
 – Fear (Ackerl et al., 2002)

• Attraction (my research field)
Thank you for listening

Quick questions?